Use the parabola tool to graph the function g(x) = ( 1/5x)^2

Answers

G  (  x  )  =  1  5  x  2  The parent work is the most straightforward type of the sort of capacity given.  f  (  x  )  =  x  2  The change being depicted is from  f  (  x  )  =  x  2  to  g  (  x  )  =  1  5  x  2  .  f  (  x  )  =  x  2  →  g  (  x  )  =  1  5  x  2  The flat move relies upon the estimation of  h  . The flat move is depicted as:  g  (  x  )  =  f  (  x  +  h  )  - The diagram is moved to one side  h  units.  g  (  x  )  =  f  (  x  −  h  )  - The chart is moved to one side  h  units.  For this situation,  h  =  0  which implies that the chart isn't moved to one side or right.  Even Shift: None  The vertical move relies upon the estimation of  k  . The vertical move is depicted as:  g  (  x  )  =  f  (  x  )  +  k  - The diagram is moved up  k  units.  g  (  x  )  =  f  (  x  )  −  k  - The diagram is moved down  k  units.  For this situation,  k  =  0  which implies that the diagram isn't moved up or down.  Vertical Shift: None  The diagram is reflected about the x-hub when  g  (  x  )  =  −  f  (  x  )  , which does not coordinate the change from  f  (  x  )  =  x  2  to  g  (  x  )  =  1  5  x  2  .  Reflection about the x-hub: None  The chart is reflected about the y-hub when  g  (  x  )  =  f  (  −  x  )  , which does not coordinate the change from  f  (  x  )  =  x  2  to  g  (  x  )  =  1  5  x  2  .  Reflection about the y-pivot: None  Packing and extending relies upon the estimation of  a  .  At the point when  a  is more prominent than  1  : Vertically extended  At the point when  a  is between  0  what's more,  1  : Vertically packed  For this situation, the diagram  g  (  x  )  =  1  5  x  2  is vertically packed.  Vertical Compression or Stretch: Compressed  To discover the change, contrast the two capacities and check with check whether there is a level or vertical move, reflection about the x-pivot, and if there is a vertical extend.  Parent Function:  f  (  x  )  =  x  2  Even Shift: None  Vertical Shift: None  Reflection about the x-pivot: None  Reflection about the y-pivot: None  Vertical Compression or Stretch: Compressed


0 0
Only authorized users can leave an answer!
Can't find the answer?

If you are not satisfied with the answer or you can’t find one, then try to use the search above or find similar answers below.

Find similar answers


More questions