
Which of the following is the solution to 4 | x + 3 | ≥ 8?
A. x ≤ -5 and x ≥ -1
B. x ≥ -1
C. x ≤ -5 or x ≥ -1
D. x ≥ -5 or x ≥ -1
Answers

If you are not satisfied with the answer or you can’t find one, then try to use the search above or find similar answers below.
Find similar answers







Mathematics, added 2021-01-19 01:38:09
Carlos ran 4 miles in 57 3/4 minutes.How fast did he run each mile? ...

Mathematics, added 2021-01-19 00:09:52
Carlos ran 4 miles in 57 3/4 minutes.How fast did he run each mile? ...

Mathematics, added 2021-01-18 19:32:06

Mathematics, added 2021-01-18 18:18:57

Mathematics, added 2021-01-18 16:59:54
Giving brainliest, please help out with steps if possible! thanks (: ...

Mathematics, added 2021-01-18 15:13:35
Giving brainliest, please help out with steps if possible! thanks (: ...

Answered by jimmyrepin
Either 4(x + 3) >= 8 or 4(x + 3) <= -8 4x + 12 >=8 4x >= =4 x >= -1 or 4x + 12 <= -8 4x <= -20 x <= -5 Answer is C
Answered by tonb
First we get rid of the 4 by dividing by it: 4 | x + 3 | ≥ 8 => | x + 3 | ≥ 2 Then eliminate the absolute operator like this: | x + 3 | ≥ 2 => -x-3 ≥ 2 or x+3 ≥ 2 Simplify: -x ≥ 5 or x ≥ -1=> x ≤ -5 or x ≥ -1 That's answer C